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Even if the eq. (E) of completely G-invariant distance extensions derived from a pairing
product is not resolved, a distance is defined by means of a metric obtained by differential reso-
. lution. Under specified conditions, the linear element solution do? is homogeneous to square
coordinate differentials. Integration of do along a curve of E affords a length relative to do?.
Boundaries of the curve represent skeletal analogs u and v, whereas inner points represent inter-
mediates in the transformation u— v, where the ligand parameters are supposed to vary con-
tinuously: a stereogenic pairing equilibrium between infinitesimally close skeletal analogs is
assumed. If the curve runs orthogonal to a unit representation space of G, the length is infinite
and the curve might be regarded as a “fractal” transformation pathway. The “thermody-
namic gap” D, is always shorter than the “kinetic” distance of the metric do?.

1. Introduction

In accordance with a previously discussed model [1], molecules are described
by a skeletal symmetry G and ligand (atoms or bonds) parameters taking their
values in a Hermitian or Euclidean vector space E. The transformation of a mole-
cule uinto a skeletal analog vis considered.

A measure of the thermochemical gap D,(u, v) between u and v has been pro-
posed by considering the stereogenic pairing equilibrium: 2u/v 2 u/u+ v/v [2].
An equation (E) defining D, from the pairing constant K, has been constructed [2].
The completely G-invariant solution D,(u, v) (it does not depend on the reference
orientation arbitrarily selected for the mathematical description of skeletal ana-
logs) has only a thermodynamical meaning. The pathway of the transformation
u— v (or v—u)is not taken into account in the design of D, (u, v). From a mechan-
istic standpoint, the transformation is partitioned in several steps characterized
by thermodynamical functions. The sums of the absolute values of these energy
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functions are characteristic of the whole transformation, featuring a “length” of
the reaction diagram. The partition is supposed to be infinitesimal: the chemical
transformation is assumed to be “‘completely gradual”, i.e. it happens as a continu-
ous change of the ligand parameter values in u to the ligand parameter values
inv.

Beside the chemical potential, the thermodynamics of the transformation of an
intermediate w to a very neighbouring intermediate (w + dw) can be quantified by
the thermochemical gap D,(w,w + dw) calculated by mean of eq. (E). The D,
value of w —w + dw is formally related (through eq. (E)) to the free energy differ-
ence of the stereogenic pairing equilibrium:

2w/(w+dw)2w/w+ (w+dw)/(w+dw).

The sum of the solutions D,(w,w + dw) of (E) is in fact an integral representing
the “length” of the pathway (defined by the intermediates w) leading fromutov.

2. Definition equation of metrics on sets of skeletal analogs

Let us remind the basic equation providing a definition of completely G-invar-
iant distance candidates D, : E x E— R, from discriminating pairing products X,
associated with an isometric action of a compact group G on a metric space (E, d)

[2]:
Puy(Dp(u,v)) = [Kp(u, V)P (E)
with

=] [ [eols St

xdgdhdkdl,
P n f P p
exp|—=d )| dg- | exp|—=d ,v)| d
/Gp[z(gu)]gcp{z(gv)}g.

(/G exp [-gdz(gu, v)] dg) i

Solutions of (E) are examined when the points u and v are infinitesimally neigh-
bouring. For this purpose, the differential of a point u in E must be defined, that is
to say the metric space E must be a complete normed vector space. In practice, E
is assumed to be G-Hilbert space or its real Euclidean counterpart. The following
notations are adopted ((:|-) denotes the scalar product of E):

_(ab)
Tl or

K7 (u,v) =

Y(a,b)eE*, cos(a,b) = d*(a,b) = |a —b||*.
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DEFINITION 1

Let G act on a normed vector space E and preserve the norm. Suppose that a pair-
ing product K,, is discriminating. Let D, be the corresponding completely G-invar-
iant solution of (E). For any points u and v in E, D, is unequivocally defined by
the equation

dsu,v(Dp(ua V)) = [Kp(ua v)]p .

Even if K, is not proved to be discriminating, let us consider the function 4, such
that

Ay (x) = cl}_r’% gzsu,u+t: (x)
(in the limit, € is supposed to be colinear to some fixed direction).

When £—0, the definition equation of x(g) = Dﬁ(u,u—i—s) between u and
v = u + greduces to

Au(x(€)) = KP(u,u +€) = K"(g) (definition of K*(g)).

Considering the two members of this equation as functions of g, successive differen-
tiationsate = 0 give

dx x=x(0)=0
dA, ) d*A, _ peu
[dedew [dxz x=0dfo_d1<0.

In order to dwell on the spirit of the process, extensive proofs of theorems are
reported in the appendix.

THEOREM 1

Let E be a real Euclidean vector space with a finite dimension ». Let G be a finite
or compact isometry group of E. Let K = K be the corresponding pairing product
(p = 1 without a loss of generality: for other values of p, vectors u have to be
replaced by ,/p u).

The differential of K" is zero over E/G : dKg = 0. A direct use of the definition
of A, shows that at the same time, [d4y,/dx|,_, = 0. It follows that a first differen-
tiation of (E) does not afford a definition of do2. On the other hand,

PKy = I%{I | (elawidu)ee® dg+1 [ (gulauyet dg

- ([ulauyeen dg)z} ,

whereI = [ eleuv) dg.
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(Proofis given in the appendix.)

Since x(g) = D(u,u+ &), the squared differential of x at zero is denoted:
dx} = do?. The theorem claims that, providing that [d?A4,/dx?|,_, # 0, eq. (E) is
locally equivalent to a definition equation of do?:

[d dAz“} do* = d’K} . (B

This equation has a single solution do? if: d* K3 - [d%Ay/dx*],_, =0

THEOREM 2
Retaining the definitions of the preceding discussion,
d*A, 2p ds% . )
{dXZ L:o— G- G“]z 722 where G® ={geG;gu=u} ([G:G"=1),

where ds? denotes the Euclidean metric of E, and ds? denotes the Euclidean metric
of the projection of E onto the unit representation subspace P; (E).

(Proof'is given in the appendix.)

Therefore, [d*4,/dx?],_, # 0 only if the vector displacement ¢ at u has a non-
zero unit component (du; = P;(g) # 0).

If, in addition, de“ =0, then the solution of (E') is

6:GT 4
2p
If [d%4y/dx?),_o =0, (IE' ) does not permit to define do? (if K¢ # 0, the derived
expression does not make sense: do” = +oo).

Let By be the function defined by: Vye R,, By(y) = Au(,/¥). Then, differentia-
tions of eq. (E) may also be written as

do* = dKO

[dBu]
4y | ymx2(0)=0

dBu} ) [dzBu} 5 2
dyo+ |55 | dyp=dKy.
[ B |, Yo 4y o Yo 0

It is easily checked that

-dyy = dK§(= 0 from theorem 1)

[a’Bu

1 [d*4
] [ “] // lim cos(gu — h(u + &), ku — u — &) dg dh dk .
dy y—O y=0

Since dxp = Dy(u,u+¢) — Dy(u,u) and dyy = Dg(u, u+¢g)— Dg(u, u) when
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£ —0, and since D,(u, u) = 0, the formal writing “dy3 = dx} = do*”’ is consistent.
Therefore, if [42A4,/dx?],_, = 0, then eq. (E) takes the second differential form:

dy?

] do* = d*Kj . (E")
y=0

This is a definition equation of do* as soon as [d°B,/dy?],_; # 0. The theorem
below claims that it has one real solution as soon as deg =0.

THEOREM 3
Whatever the compact group G is: [d°Bu/dy?],_, >0. And if G is a finite group:
[d*Bu/dy*],o>0.

Proof
Itis easily checked that

2
4Bu] /umcosz(gu—h(u+s),ku—u—s)dgdhdk;@.
dy2 y=0 e—+0
(el

This expression is strictly positive if the set of the members of G° satisfying
lin})cosz(gu —h(u+eg),ku—u—¢g)#0
£

cannot be neglected for the Haar measure of G*. Since it equals 1 forg=h =k
= e (whatever g is), this is always true for finite groups. O

We conclude that the existence of a differential solution for the basic equation
(E) by means of either eq. (E') or (E”) depends on whether d> K¢ >0. Furthermore,
the solution is a consistent metric on E/G if d*K§ has a definite and positive
bilinear form.

From the Cauchy-Schwartz inequality,

2
I/(gu[du)ze(g“l“) dg — (/ (gu|du)eE ™ dg) =>0.
G G

Thus, theorem 1 provides a sufficient condition ensuring that d>K3 is positive:
| (etatu)idu)ete) dg>o,
G

i.e., whatever the value of a (= du) is: [,(gala)e") dg >0.

If u is close enough to the unit representation (VgeG,gu—u),
fs(gala)e®™) dgtends to elel’” [ ;(gala) dg. From a proposition given in refs. [1a,3],
[;(gala) dg>0. Thus, 42K is positive for any vector u in the neighborhood of the
unit representation (in particular in the neighborhood of zero).
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THEOREM 4
Let G be an Abelian compact group acting on an Euclidean space E. Then,
d*K is positive anywhere in E/G.

(Proofis given in the appendix.)

If Gis no longer Abelian, it is difficult to determine whether d2KJ is always posi-
tive (and/or definite) in E/G. Nonetheless, some examples below validate the rele-
vance of the question.

3. Irreducible representations

From now onwards, the terminology of representations in Hermitian C-vector
spaces (G-Hilbert spaces) is adopted.

THEOREM 5

Let G be a compact group realized as an isometry group of the Euclidean plane
E = R?, such that if R? is identified to C, E is a G-Hilbert space of degree one with
an irreducible character x; (G =C,,D,,n=2,...,00). Then dZIQ’ is anywhere
positive and definitein E/G.

(Proofis given in the appendix.)
General expressions of d2K¢, alternative to the expression given in theorem 1,
are proposed when E is considered as a G-Hilbert space.

THEOREM 6

Let E = R? = C be an irreducible representation space of a compact group G,
isomorphic to an irreducible representation I" of degree one, with a character
x = €. Then

d?K3 = 2[K;(u,u + du) — 1 — O(|du)’] = z{ (5 - f) Re*(u|du) + }J- || dul®

I I?
- (1 -—?) Imz(u]du)} ,
where

I=/eﬂcosa(g) dg, szcosa(g)eﬂcosa(g) dg,
G G
K=/c052 a(g)e’2°°5°‘(g) dg .

G

In terms of polar coordinates (r, 6):

rK R2r2oJ J—rL
e - (2T 2 de?
dKO_.(I 7 +I)dr2+( 7 ) de’ .
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This results from theorem 1, but a somewhat intuitive proof is given in the
appendix.

THEOREM 7

Let G be a finite group, and let E 2 R? be an isotypical G-Hilbert space of an irre-
ducible representation of degree one with a character x = €. If E is not isotypical
to the unit representation, then

d’B, c\? ar?
[ 42 L=0= 3t 2(@) /GCOS[Za(g)] dg 29>

where c is the number of elements g such that x(g) = 1,ds? = ||du|)?, dr* = d||u|*.
c is also the order of the group C(e) = {ge G; x(g) = 1}, and ¢/|G] is also the reci-
procal of the index of C(e) in G, [G : C(e)].

(Proofis given in the appendix.)

COROLLARY

Under the same general hypothese as in theorem 7, G is supposed to be a cyclic
group C,,n>2, and its natural representation on E = R? is considered
(x(g¥) = exp[24%)). Then [d?B,/dy*],_, depends on dr*/ds* only if n = 2. More
precisely,

2 1 dr*
o if G = C;, [—d—ﬁ] =—(1+-——),
y=0

dy? 2 ds*
2 1
'ifG:Cn;n>3) lid_BZ“] =5
dy* |,o 2
(in polar coordinates in R?, ds* = dr® + r*d¢?).
Proof
Ifn =2,

|G| / cos[2a(g)] dg = cos[0] + cos[2n] = 2.
G

Iftn # 2,
[ n—1 .
; 4ik
[G|/ cos[2a(g)] dg = Re Zez'“(g) =Re [Z exp (ﬁ)}
¢ £<G =0 n
M1 — e4i1r
= Re -T?em:l =0.

The corollary follows from theorem 7. O
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A direct application of theorems 5, 6 and 7 allows the solution do* of eq. (E”) to
be explicitly calculated when E is a G-Hilbert space of degree one.

de“)'
dS4 = Fz—B—u—]—— .
a? |,

This formula is illustrated in the examples below.

6= Coo
Let C = R? be theirreducible representation space of C,, defined by
Vg=¢%eCy, Vz=re?ecC, gz=rel+,

Using theorem 6 and the corollary of theorem 7, the solution of eq. (E”) is simply
calculated [4]:

]2
do* = 4#(1 —-ﬁ)drz,
with

1 2 1 2r
I g cose da,J=-2—/ €" %% cos o dor.
0

_271' 0 i

2)G=0C

Euclidean pairing products of this group were proved to be discriminating. By
a direct calculation or by applying theorem 6 and the corollary of theorem 7, the

general expression of the solution of (E") for the representation “‘ou = —u” is
calculated:
4
do* = —— (tanhr2 ds* +———'2—2—dr2 ,
1+ f cosh” r?
ds?
or using the polar coordinates:
2
1472 % 2
do* =4— 4 (tanhr2 +——— |dr* + P tanhr? d6? | .
, d6? cosh” r2
24rt—
dr?

Alongreallines (df = 0: F = R), dr? = ds* = dx?,
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x2

2

for x#0: do* = 2(tanhx2 +
cosh” x?

) dx*
for x=0: do® =dx*.
Along the circle of radius 7 >0 (dr = 0): do* = 41 tanh 2 d6?.

4.Kinetic distanceson E/G

Let E/G be identified to a part of representative vectors of E, and suppose that
E contains a unit representation subspace of G. Let us consider curves of E with
everywhere a non-zero projection onto the isotypical unit representation (ds; # 0).
Theorem 2 suggests that if do is a positive differential form (especially if K}, is a dis-
criminating pairing product), a distance A, could be defined by

B _1G:6Y / (ds/drt)  [d*Ky
st = Jor [ ar=S0 et [ i e

A curve Cy -y With an extremum length for a metric do? can be called a “geodesic
line” between u and v. By extension, curves without a projection on the unit repre-
sentation (ds; = 0) would have an infinite length. However, an area can be asso-
ciated with such curves by means of the definition of do? from eq. (E”) as soon as
[‘12 22 1,=0 # 0 (theorem 3):

A(u,v)= Inf / do* = Inf /
curves Cy oy __v curves Cy—y ey

Metric forms on E have a quadratic expression:
ds* = Z Z aidxdx;
iJ

where the x;’s are curvilinear coordinates of M. The «;’s are functions of the x;’s,
and ds* is heterogenous and isotropic (the o;’s depend on the position, but not on
the “direction” in which the linear element is measured: the o;;’s do not depend on
the dx;’s). Metric forms do” on E/G depend on both the position (xj,. .., x,) and
on the “relative directions” ch ) ,‘%‘) with respect to the subspace of the unit
representation (where the metric and eventually the interpolating completely G-
invariant distance coincide with the Euclidean metric). These metrics are therefore

heterogenous and anisotropic.

5. Comprehensive study of the group 8,

We first give a general result concerning the direct sum of irreducible representa-
tions of degree one containing the unit representation.
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THEOREM 8

Let E be a G-Hilbert space with two isotypical components: E = m; V; @ my V>,
where V) is a unit representation space of Gand ¥V, is any irreducible representation
space of G: any vectors u and v are direct sums of their components u; and v; in
m Vi, and u; and v, in my V3. If K, is a pairing product of E, then K,(u,v)
= K,(u; @ uz,v; ® v2) = K,(u, v1)K,(uz, v2), and

KD = 2K 4 PR

Proof
For any u = uj @ uy, with u; em, V) and u; e my V3, the functions K*, K™, K™

are defined in the neighborhood of 0 by
K%(e) = Ky(u,u+¢) = Ky(uj,u; + &) - K,(uz, 0y + 82) = K% (g1) - K™(g,),

wheree = g, @ &, withg; em Vyand g, eny Vs,
By differentiationate = 0,

dKg = K" (0) - dKy* + K*(0) - dKy' =0 (theorem 1),
and
d*Ky = K" (0)d’Ky* + K*(0)d°Ky' + dKy'dKy* + dKy*dKy' =0
= K" (0)d’Ky + K™ (0)d’Ky" +0 (theorem 1).
Since K" (0) = K™2(0) = 1, theresultis proved. O
§; has only two irreducible representations: the unit representation V) and

the representation V,. Any representation space V of 8, can be reduced as
V =m V) & mV,. Ithas been proved elsewhere that

&(x?) = Py y(x) _1

ghk=%1
x exp | p |u; — V1||2 + Re(guy — Avylku; — vy) 2
Vllas = il + llgus = Avall®y/ljws = vt + kg = v
Thus:
&(0) _P flui = vi ”2 + Re(gu; — hvolkuy — vs)

8
ghk=stlluy = viP? + gz — hvallPy/lhus = val? + flkws — va 2

Setting u; —v; =& and u; — v, = ¢&;, and using the expressions ‘“Re(u;|du;)
=r; dr;”, “||duy])?* = = ds7”’, the values of the eight terms occurring in the sum are col-

2

lected in the table bclow for w #0:
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g h k g h k
+ + + 1 - + + drayfds
+ 4+ = dr/ds -+ - 1
= 4 —dr/ds - =+ (ds}—ds})/(ds] +ds})
+ _ - -1 - - - —dry/ds
Therefore,
d*A, . P st —ds2\ p ds
28— lim #(0 1 =S
[dxzko Yim #(0) = ( +¢y2+d52) 445> + ds2

If u¢m V, (ie. uz #0) and if ds? # 0, the metric do? is defined by [d?4,/
d?],_y(# 0) and by

PR = PR + PR = tanhds+ D i i+ st
2
(see preceding section).
e Foruém 1,

~andds? #0 : do? = 4(1 + ZSZ) (ds2 + tanh r}ds} +—22~dr2)

—andds? =0: do*= 4 (tanh rds; + —2— o drz)
1 +d_r% cosh?® 1
ds}

e Foruem, Vy,do? = ds} + ds3 = ds°.

The metric is not continuous in the neighborhood of m; V,: when u¢m; V; but
u—>m; Vy,r, tends to zero and do? = 4 (ds? + ds3)(1 + 0) # ds? + ds, the latter
expression being the metric in m; V; [5].

The result is illustrated by the action of §, in R? by reflection through the y-axis
(real projection of the regular representation of 8,). The x-axis is the real projec-
tion of the non-unit irreducible representation of 8, (dx? = dr3 = ds2), and the y-
axis is the real projection of the unit irreducible representation of §; (dy?
= ds? = dr?). The non-differential solution of (E) was already given explicitly. R? is
now endowed with the corresponding metric do?, allowing the geodesics of this
metric to be calculated.

Let us define the real function F(x) = tanhx? + x2/cosh? x2>0. We seek for
curves (y = y(f),x = x(f)) in R?/G = R x R, with extremal lengths for the metric
do?. Setting T = 1do? /d7, the Euler equations are written as

() DA

3y ay o ) " ox O
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Excluding both the y-axis and the x-axis from R x R, the linear element along
curves without any section parallel to the x-axis is:

xzz
do? = 4( 1+ ;;5) (V2 + F(x)x?) di* .
Restricting the curves to those given by implicit functions y = y(x),t = x:
1
do® = 4(1 +)ﬁ) (V2 + F(x)) dx*.

The Euler equation left becomes

9

oy’
Simple derivation yields

(1= K)® = (F(x) + 1)y — 2+ E)F(x)y"* + F}(x) = 0.

For k = 0, the equation reduces to y"® — 2F(x)y"* + F?(x) = 0. The geodesic
solutions are given by yo(x) = ¢ £ [[[F(7)] 1% dt, ¢ =constant.

1
(1 + y_'z) (y”? + F(x)) = k (constant) .

For k = 1, setting Y (x) = [F(x) + 1]y’%(x) + F(x), the equation is easily proved
to be equivalent to Y3 — 3F%(x) Y — F2(x)[1 + F?(x)] = 0. The discriminant of this
equation equals A = 4[—3F% + 27[F2(1 + F%)]> = 27F*[F* — 1]*>0, and a Car-
dan’s solutionis ¥; = F2/3 4 F4/3

The equation is therefore

(Y— Y])(Y2+[F2/3 +F4/3]Y-{— FZ(FZ—J{— 1)) )

F43 1 F2/3
The discriminant of the equation of degree two is:
A= -3FB(1 - FPY<0.

Thus, there is only one geodesic left fork = 1:

F23(1) + F*3(1) — F(1)
—c:t/ \/ T+ F (D dr.

All the lines parallel to the y-axis are also geodesics: along these lines, ds?
= 4ds? (ds? = 0) is of Euclidean type. Geodesic lines in R? for some k values are
plotted in fig. 1. Intuitive graphical speculations suggest that the shortest pathway
Ap(u, v) joining to points u and v with the same y coordinate does not exist: the ser-
ies of the lengths of pathways drawing nearer to the segment [u, v] seems to tend
toward a lower limit, but the limit pathway (segment [u, v]) is discontinuously asso-
ciated with an infinite length [6].
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g g s g
A7 % irE i opinol
7
X
-1 \
0 1 2

6. Concluding remarks

Two kinds of distance are possibly defined on E/G: a distance extension D, and
the distance A, of the metric do?. The former is derived from a thermodynamical
interpretation, while the latter gives the length of the “shortest pathway” between
skeletal analogs. Since D, < A,, “the shortest transformation pathway is always
longer than the thermodynamic gap”. In other words, some kind of non-zero
““activation energy function” is needed to transform a molecule into a skeletal ana-
log: this activation energy function lengthens the ideal thermodynamic gap
between them. When none of the ligand parameters is constant, this activation
energy does not rapidly tend to zero when the skeletal analogs draw nearer to each
other, so that the curve lengths are infinite: these transformation pathways may
be compared to “fractal’” pathways. Differential geometry is a tool serving the ana-
lysis of chemically reacting systems [7]. Modeling of chemical transformation path-
ways by geodesics of simple Hilbert spaces (G = {e}) has been proposed [8]. In
view of reproducing the Woodward-Hoffmann rules, the geodesic lines of the Hil-
bert space of the electron states of a reacting system (endowed with its natural
metric), were shown to satisfy the Least Motion Principle of minimal structural
changes which is itself expressed by a maximization condition of a scalar product.
This is related to our formalism where geodesic lines correspond to the requirement
of stereogenic pairing equilibria between infinitesimally close intermediates (equa-
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tions (E) and (E”)). The mathematics that have been elaborated so far aim at
describing the very conceptual chemistry of stereogenic pairing equilibria. Many
questions are still open: the discriminating character of general pairing products,
the explicit and differential resolutions of eq. (E), the triangular inequality of the
solutions and the comparison of distances D, and A,. The ultimate design of new
completely G-invariant distances might find applications in all problems of recog-
nition between symmetrized systems, and these preliminary results and specula-
tions will give rise to further investigations.
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Appendix

Proofof theorem I
Let (e1,...,€n) and (uy, . ..,u,) be the respective coordinates of vectors € and u

in an orthonormal basis set (ey, ..., e,) of E.
By differentiation,

dK§ = Z[B&J de;;

e=0

LK = Zz[&‘a&j]e dey de.

i=1 k=1

By definition,

( / Slgulu) dg) ( / SBlutute) dg)
G G
2
(/ olgulute) dg)
G

2
BK" = I y /Ai(g)e(g(“'*'f)l“"‘f) dg /e(gu[u+e) dg
Je; ¢ G
( / Sleulute) dg)
G

_ ( / pleuellire) dg> ( / Sleulute) dg) ( / 2By (g)e® ) dg) }
G G G

K*e) =

b
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With:

= / o) Jg
G

Ag) = 5 glu-+ e)lu-+e)(= 4),

Bi) = 5 (gulu+ 2) (= (gule) = B)

Since e(844) = ¢(e7'4l¥) the term 2B;(g) occurring in the sums can be replaced by
Bi(g) + Bi(g™").

Let u = (uy,...,un),€ = (€1,-..,€4) in an orthonormal basis of E. The matrix
coefficients of the isometry g in the same basis are denoted as a,;(g), | <r<n,
l<s<gn.

Ai(g) - Bi(g) = Bi(g™) = - (gl + )+ €) — (gulu + )

66, [

~ (g + )] = o= [(gele) — (gulu)]

= 58-‘ ( Z Z ars )ErEs

Tr=1 s=1
n

= (ar(g) + an(g))er

r=1

Ate=0: A,(g) - B,(g) - Bi(g_l) = 0, i.e. A,(g) = B,(g) + B,'(g—l). But at e = 0,
we calculate

[%K L_o Ilz [4i(g) — 2B;(g)]e® dg .

Consequently, [0K*/0g;]._, = 0,and dKj = 0.
Let us calculate the second derivatives at zero:

K I ( / (aA ) )
_— — I —_— AA (gulu) d I2 + /Az (gulu) d
28] = f e (G am)emm e ([ acm i
X (21 / Byeleu) dg>
G
- I( / Apele) dg) ( / 2B;els4) dg) - I( / Byeleul) dg)
G G G
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X ( / 2B;ele i) dg) -r ( / (2@- + 2B; Bk) elgul) dg)}
G G Oe
— 4P ( / Byel&“) dg) [( / Ajele ) dg) ) S G ( / 2B;e(4¥) dg)} }
G G

G G

? 3 Ex
_2 / Ake(guw) dg / Biele) dg 2 / Beele ) gg / Biee) g
G G G
9B; (gul) (gulu) (gulu)
-2I B2, e84 do — 4 Bke & dg | Aje dg
G G

+8 / Brel®¥) dg / Bje®“M) dg}
G G

= __15{1/ (gi+AAk> eleuls) dg-—2]A,-e(g“[") dg/Bke(g“[“) dg
I Ek G G

) / Ape®™) dg / Bie8*) dg 1 6 / Bie®) dg / B;e8¥) dg
G G G G

- 21/ (?ﬁ. + BBk) elauls) dg}
¢ \0

_ 1 1/ M+AiAk“2Bin @) do
I? G Oeg

-2 / A;e®) dg / Brele¥) dg
G G

_9 / Ae®) g / Be®) dg + 6 / Be®) dg / B gg b
G G G G

Again, the terms 2B;(g) and 2By(g) occurring in the sums can be replaced by
Bi(g) + Bi(g™') and Bi(g) + Bi(g ™).
It has been shown above that:

l(g) ( Z(atr -+ arz )Er .

Therefore,

9
aEk

Using again the fact thatate = 0, 4;(g) = Bi(g) + Bi(g™"), we get

(i(e) — Bilg) — B,-<g-1)1] = ai(g) + auls).

e=0
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K 1
= — ; . (gulu) B, o8ul)
[agkagi:l o P {I/G(a,k(g) + ari(g))e dg + ZI/GBkaE dg

_5 / Bee®) gg / Bl dg}’
G G

Blg) = 5 (el +€) = - (gule) = 3 (g = (gue).
! ! r=1

where

0 Iz { Z Z a'k + akl )dE,dske(g“I“) dg

G =1 k=
+ 21/ Z Z B;Bide;deie& dg
i=1 k=
n
/ > By degel® ) dg / > Bideele ) dg}
G k=1 i=1
" 2
=7 {21/ ZZ ax(g) de; dey, e dg+21/ (Z Bidgi) &) g
i=1 k=1 i=1

n 2
- 2(/ ZB,- de; &) dg) } .
G =1

But from the definition of the de;’s,

iB,- de; = (gu|du) , Z Za,k ) de; dex = (g(du)|du) .
i=1

i=1 k=1

In conclusion,

d*K} = —2—2—{ /(g (du)|du) &) dg+I/(gu|du) el&) dg

- (/G(guldu)e(gulu) dg)z} |

Proofoftheorem2
Retaining the prerequisites of the proof of theorem 1, forv = u + &:

d®, e PP,y
Tude)  _ g, [Tt —2¢/(0).
]: dx ]x—-O ’I: dx2 x=0 ( )
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Let P, denote the projector onto the unit representation.
Since A,(x) = lim, - ¢ Py ute(x):

d’A, o 2 dg 2
[ ]x=0 =2 lim ¢'(0) = 2 lim p|[P1(u) ~ P1(u +€)]| (/Gm)

dx?
_ dg S 2 dg\?
= 2 lim p||Py (e 2(/ ”‘“‘_“) +2 lim pl[P1(e (/ _)
IRPIPON gl — ) 2 PN Tl

2
=042 lin})p]]i}’l (E)”Z(/ %) (G* is the stabilizator group of u)
[ e
2
I Gy
[G: G e=0 el
The result is proved, by setting ds? = ||P, (e)||* and ds* = ||||>. O

Proofoftheorem4
From theorem 1, itis sufficient to show that

Y(a,u)e E*, /(gala)e(g“[") dg=0.
G

|
meﬁM@=Z;AMMMW@.

p=0+"

The representation in E is naturally extended to a representation in the complex
space C x E endowed with the Hermitian form ¢ - | - ) coinciding with (-|-) on E. If
X1,- - -, xr are theirreducible characters of G, then

/G (galay{gulu)? dg = &m},
i=1

with

Cgala) = &xi(e) and (guluy = mpixile)
=1 i=1

(expansions of the central functions g— {gala) and g — (gu|u)? on the basis of
the irreducible characters of G). We aim at proving that the {;’s and the ), ;’s are real
and positive numbers.

It has been proved above that & = || Pal|* and mi = || P

Suppose that then,_; ;’s are positive real numbers. 7, ; is expressed by
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i = /G Cguluyx; (g) dg = /G Ceuluy ™ (guludx; (g) dg

=D oM / x(@)xx(8)x; (8) dg
h=1 k=1 G

Jo xn(g)xx(g)x; (8) dg = [; xnek(8)x; (g) dg = the number of times the ith irreduci-
ble representation of G occurs in the tensorial product of the Ath by the kth irreduci-
ble representations =a positive integer. Since To-L and % are positive real
numbers, the same statement is true for all the 7, ;’s. Thus [ {ga|a){gu|u)? dgand
hence |, G (ga]a)e@u “ dg, are positive real numbers. When u and a are restricted to
vectors withreal components, ¢ - | - > can be replaced by (-|-) and 42K} is positive. O

Proofof theorem 5
The Hermitian form of E is denoted as { - | - ): its real component is the scalar
product of R (-[-) = Re{ - | - ). Since

Cgalay = xi(g)llal* and <gulud = xi(g)lu|’,
we get
| /G Re(gala) " dg = |af / Refxi(g)] "Ml g
Let us define the functionon R*:
fiR. >R, f(x)= /G Refy;(g)] eRehul®lx gg
We get f(0) = 0(the trivialcase G = {e}, where f'(0) = 1, is not considered). But
7) = | Retbule)] R dg>o.

Thus, f strictly increases and remains strictly positive over R, — {0}. Taking
x = ||lul)%, it follows that d°K¥ is positive. Since d>K¥ = 0 implies [|a||* = 0, i.e.
a=0 deg is also definite.

Proofoftheorem6
We proceed intuitively by expanding K, (u, u + du) to the terms du of order 2.
Ky (u,u+ du) ~ [I[I + (||dul® + 2 Re(u|du))J + 2K Re*(u|du))]/
[I + J Re(uldu) — J' Im(u|du) + (K/2) Re*(u|du) + (L/2) Im? (u|du)
— M Re(u|du) Im(u|du))?],

where

I = / e Rex(@) dg,
G
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J=/Re x(g) " Rex® gg J’=/Im x(g) ¢ Rex@ gg
G G

K= / Relx(g) ¢ Rex® dg = / Im?x(g) € ReX® gg,
G G

M=/Re x(g) Im x(g) ¢” Rex(®) dg |
G

Since x(g) = x*(g7'), itisevident that J' = M = 0. Further expansion to the terms
duof order 2 gives
K J?

1+ 1Ky ~ K (u,u+du) = 1 + (—I— - ﬁ) Re? (u|du) + ; || du))?

_ %mz(u]du) +0(|dw)’) .

Onthe other hand, K + L = I, and the theorem is proved.

Considering E as a complex line: u = re®, du = dr e + ir d9 ¢”. Thus, (u|du)
= u du* = r dr — ir* df. Substituting the imaginary and real parts by their expres-
sions in the former equality, the theorem is proved. 0

Proofoftheorem?7
Since E'is an isotypical representation of degree one: Vae E, ga = x(g)a.
From theorem 3,
d’B,

{—Z—J =///Iimcosz(gu~h(u+s),ku—u—e) dg dh dk =0 .
dy =0 2, e=+0

o Forg, h, ksatisfying x(g) # x(h) and x(k) # 1 (|G| x (|G| — ¢)* triplets):

{x(g)x"(k) + x(h) = x(g8) — x(W)x* (k)}
Ix(h) — x(&)lIx(k) — 1 '

cos(gu—h(u+e¢),ku—u —e) — Re

e—+0
Setting x(g) = €8, standard trigonometric calculations lead to

ole) o) = ll)] _ o208,

cos(gu — h(u+¢€),ku —u — g) — % cos

e—+0

2 2

e Forg, h, ksatisfying x(g) # x(h)and x(k) = 1 (|G| x (|G| — ¢) x ctriplets):



R. Chauvin/ Chemical algebra. IV 305
cos(gu — h(u +¢€),ku—u—¢)
o Re{llx(g)x” (k) + x (k) — x(8) — x(W)x" (R)][lull® + (x (k) — x(8)) (ule)
+ x () (1= X () (elu) + x(R) - [lel™)/ [ (k) = x(@)I - Il - lellT}

N (x(h) — x(g))(ule)
o Re{lx() X@)I - lull- ueu}
E:O[ —2sin(a(hg)/2) sin(a(hg™')/2) cos(u, €)

— 2cos(a(hg)/2) sin(a(hg™")/2) sin(u,€)]/[2| sin(a(hg™")/2)|]
~ isin[a(;g) + (u’ 5)} — :tlm[eia(g)/zei(u,s)] )

e—~=+0
e Forg, h, ksatisfying x(g) = x(h) and x(k) # 1 (|G| x ¢ x (|G| — ¢) triplets):

x(R)(1 — x* (k) (e|u)
cos(gu — h(u+¢),ku —u —¢) E:ORG{ Ix(k) = 1] - {lu]] - “5”}

o [—2sin(a(k)/2) sin(a(h) — a(k)/2) cos(u,e) — 2 cos(a(h)
— a(k)/2) sin(a(k)/2) sin(u, £)] /2| sin(a (k) /2)|]
o +sin [a(hzzk") + (g, u)} == iIm[e"”‘(hqu)/ 2giem)] |

e Forg, h, ksatisfying x(g) = x(k) and x(k) = 1 (|G| x ? triplets):

x()llel”
lell?
If G is a finite group, let us define for any element g of G the subset of

G: C(g) = {heG;x(g) = x(h)}. The number of elements in C(g) is denoted as
#C(g) = #C(e) = c. It follows that [d?B,/dy?], _, equals

cos(gu — h(u+¢€),ku—u—¢) ~ Rc{ } = cosa(h).

y=0

geG  heG keG geG  heG keG
x(M#x(g) x(k)#1 x(R)#x(g) x(k)=1

{z I I N )

Zk—l

+Z Z Z sin’ [a(hz )-l—(s,u)} +>: Z Z cos? a(h) } .
g2€eG  heG keG geG  heG keG
x{h)=x(g) x(K)#1 x(h=x(g) x(k)=1

Let us calculate each term of the sum.
(a) The first one is denoted as
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A=Z Z Z cosza—(g’;jl—z.

geG  heG keG
x(M#x(g) x(k)#1

Then
hk“) a(ghk*‘)
A= coszg(ﬁ—— - cos? —>— 7
-1 -1
_ Z Zcosz a(gl;k )_ Z cosza(g};k )
heClg) | keG keCle)
k) a(gh)
A= coszg(—— - cos? —7
;;;{;g;[;g% 2 kgéi) 2
- Zcosz _a(zk) - Z cos? —a%’z)
heC(g) L keG ke Cle)
. z_a_(k_) _ 2 o(gh)
A-Z{ZliZcos > €COoS 5
geG | heG | keG

_ 200 oale)
h;g)l;;cos 3 cos” — }}

Setting § = Y, . gcos’(a(k)/2) and T = 3, . s cos? a(k), we get (#C(g) = #C(e)
::c)

A4 =(|G]* - 2¢|G))S + T

(b) Thelast term is simply

Dzz Z Z cos’> a(h) = *T .

geG  heG keG
x(h=x(g) x(k)=1

(c) The second term is denoted as
B:Z Z Z sinz[@-}-(u,s)} :

geG  heG keG
x(h)#x(g) x(k)=1
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L) - 3 s |20 )]}

geG | heG heC(g)

_cz{zsm[

geG geCG
(indeed a(g?) = 2a(g)).
(d) The third term is denoted as
C= Z Z Zsm[ 1)—{—(s,u)] :

geG  heG keG
x(h)=x{g) x(k)#1

= c{]G] Zsm [ (u, s)] - chinz[a(g) + (u, a)]}

= c{{G[ Zsm [ g e,u)] - chinZ[a(g) + (s,u)]} .

g2eG geG

Using the equality (e,u) = —(u, €), the sum B + C is calculated by standard trigo-
nometry:

B+C= c{Z]GlS —2|G|cos’(u,€) Y _ cos o(g)
geG

—2¢T + 2ccos*(u,e) Y cos[Za(g)]} :
geCG

Butif Eis not the unit representation,

3 cosa(g) Re{Zx }

geG geG
Thus
dzBu} 1
—— [A+ (B+ C)+ D)
[ dyz y=0 ]G|3
1 2
—S+ 2( ) cos?( cos[2a(g)] .-
~ 1G] |G IGI Z

geG

(The coefficient of the sum T vanishes.)
Notice that
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k) +1
S = Zcos =Zcosa(2)+ =%+%Zcosa(g)=%+0.

keG keG geG

If eis identified to the differential du,

cos*(u,e) = (I]ulllldu”)

If r = ||u], then Re(u|du) = r dr. On the other hand, ||du||* = ds*. The theorem
follows. O
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