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Even if the eq. (E) of  completely G-invariant distance extensions derived from a pairing 
product is not resolved, a distance is defined by means of a metric obtained by differential reso- 
lution. Under specified conditions, the linear element solution da  2 is homogeneous to square 
coordinate differentials. Integration of do, along a curve of E affords a length relative to da  2. 
Boundaries of the curve represent skeletal analogs u and v, whereas inner points represent inter- 
mediates in the transformation u--* v, where the ligand parameters are supposed to vary con- 
tinuously: a stereogenic pairing equilibrium between infinitesimally close skeletal analogs is 
assumed. I f  the curve runs orthogonal to a unit representation space of G, the length is infinite 
and the curve might be regarded as a "fractal" transformation pathway. The "thermody- 
namic gap" Dp is always shorter than the "kinetic" distance of the metric da  2. 

1. I n t r o d u c t i o n  

In accordance with a previously discussed model [1], molecules are described 
by a skeletal symmetry G and ligand (atoms or bonds) parameters taking their 
values in a Hermitian or Euclidean vector space E. The transformation of a mole- 
cule u into a skeletal analog v is considered. 

A measure of the thermochemical gap Dp(u, v) between u and v has been pro- 
posed by considering the stereogenic pairing equilibrium: 2u/v ~ u/u  + v/v [2]. 
An equation ~ )  defining Dp from the pairing constant Kp has been constructed [2]. 
The completely G-invariant solution Dp(u, v) (it does not depend on the reference 
orientation arbitrarily selected for the mathematical description of skeletal ana- 
logs) has only a thermodynamical meaning. The pathway of the transformation 
u --+ v (or v ~ u) is not taken into account in the design ofDp (u, v). From a mechan- 
istic standpoint, the transformation is partitioned in several steps characterized 
by thermodynamical functions. The sums of the absolute values of these energy 
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functions are characteristic of the whole transformation, featuring a "length" of 
the reaction diagram. The partition is supposed to be infinitesimal: the chemical 
transformation is assumed to be "completely gradual", i.e. it happens as a continu- 
ous change of the ligand parameter values in u to the ligand parameter values 
inv. 

Beside the chemical potential, the thermodynamics of the transformation of an 
intermediate w to a very neighbouring intermediate (w + dw) can be quantified by 
the thermochemical gap Dp(w, w + dw) calculated by mean of eq. (E). The Dp 
value o f w  ~ w + dw is formally related (through eq. (E)) to the free energy differ- 
ence of the stereogenic pairing equilibrium: 

2w/ (w + dw) ~ w / w  + (w + dw) / (w  + dw).  

The sum of the solutions Dp(w, w + dw) of (E) is in fact an integral representing 
the "length" of the pathway (defined by the intermediates w) leading from u to v. 

2. Def in i t ion  equat ion o f  metrics on sets o f  skeletal analogs  

Let us remind the basic equation providing a definition of completely G-invar- 
iant distance candidates Dp : E x E -~ R+ from discriminating pairing products Kp 
associated with an isometric action of a compact group G on a metric space (E, d) 
[21: 

~u,v(Dp(u, v)) = [Kp(u, v)] p (E) 

with 

• u,v (x)=f f f fexp [P d2 (gu' lv)+d2(ku,~(gui_~v)~d___~, ~v)hv)-d2(gu'ku)-d2(lv' hv)x21 

G ~ 

× dg dh dk dl, 

(£expl < 
Solutions of (E) are examined when the points u and v are infinitesimally neigh- 
bouring. For this purpose, the differential of a point u in E must be defined, that is 
to say the metric space E must be a complete normed vector space. In practice, E 
is assumed to be G-Hilbert space or its real Euclidean counterpart. The following 
notations are adopted ((-I') denotes the scalar product of E): 

(alb) d2(a,b) -- Ila - bll 2 V ( a , b ) ~ E  2, cos (a ,b )=Re ,a , , . l l  II Ilbll ' 
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DEFINITION 1 
Let  G act on a n o r m e d  vector space E and preserve the norm.  Suppose that  a pair- 

ing p roduc t  Kp is discriminating.  Let  Dp be the corresponding completely  G-invar- 
iant  solut ion of  (E). For  any points  u and v in E, Dp is unequivocal ly  defined by 
the equa t ion  

~u,v(Dp(u, v)) = [Kp(u, v)] p . 

Even if Kp is not  proved to be discriminating,  let us consider the funct ion At, such 
tha t  

A~ (x) = lim ~/i ,u+¢ (x) 
~:-'~ 0 

(in the limit, e is supposed  to be colinear to some fixed direction). 
W h e n  ~--+0, the defini t ion equat ion  of  x ( e ) =  Dp2(u ,u+e)  between u and 

v = u + e reduces to 

Au(x(e)) = KpP(u,u + ~) = KU(~) (definition of  K"(e)) .  

Consider ing the two members  of  this equat ion  as functions of~, successive differen- 
t iat ions at  e = 0 give 

dAu] .dxo = dK~ , 
k dx j x=x(O)=0 

[aAo] .d xo + : a2K . 
L- x ] x=0 L dx2 ix=0 

In order  to dwell on the spirit of  the process, extensive proofs  of  theorems are 
repor ted  in the appendix.  

THEOREM 1 
Let  E be a real Eucl idean vector  space with a finite d imension n. Let  G be a finite 

or compac t  i sometry  group of  E. Let K = K1 be the cor responding  pair ing p roduc t  
(p = 1 wi thout  a loss of  generality: for other  values of  p, vectors u have to be 
replaced by x/ff u). 

The  differential  o f K  u is zero over E/G : dK~o -- 0. A direct use of  the defini t ion 
of  Au shows tha t  at  the same time, [dAu/dx]x=o = 0. It  follows tha t  a first differen- 
t ia t ion of(E)  does not  afford a defini t ion o f d a  2. On the other  hand,  

d2K~ ---- ~ I (g(du)[du)e (gulu) dg + I (guldu)2e (g~l~) dg 

-(fc(guldu)e(gulu)dg)2}, 

where I = fa e(gulu) dg. 
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(Proof is given in the appendix.) 
Since x ( e ) =  D(u, u + ~), the squared differential of x at zero is denoted: 

d ~  = do a. The theorem claims that, providing that [d2Au/dx2]x=o # O, eq. (E) is 
locally equivalent to a definition equation of do-2: 

2 J x=0a°; = . (E') 

This equation has a single solution do a if: d2K~o • [d2Au/dx2]x=o >10. 

THEOREM 2 
Retaining the definitions of the preceding discussion, 

[ ~ u ]  _ where G u = {g~G;gu = u} ([G: GU]>~l) 
2p a4 

2 jx=o [G: Gu] 2 ds2 ' 

where ds 2 denotes the Euclidean metric of  E, and dsl 2 denotes the Euclidean metric 
of the projection of E onto the unit representation subspace ~P1 (E). 

(Proof is given in the appendix.) 
Therefore, [d2Au/dxZ]x=O # 0 only if the vector displacement e at u has a non- 

zero unit component  (dul ~ :Pl (e) # 0). 
If, in addition, d2K~o ~> 0, then the solution of (E') is 

dcr2 [G : GU] 2 ds 2 d2 u 
- 2 p  . 

If  [d2Auldx2]:<=o --- 0, (E') does not permit to define d ~  (if d2K~0 # 0, the derived 
expression does not make sense: do 2 -- +oo!). 

Let Bu be the function defined by: Vy ~ R+, Bu(y) = Au(v/y). Then, differentia- 
tions ofeq. (E) may also be written as 

I ~ ]  "dyo = dKg(= 0 from theorem 1) 
y=x2(O)=0 

[d2Bu] 
Ida<,] .d2yo + .dy0  = d2sq,. 
L dy J y=o k ay2 J,=o 

It is easily checked that 

~] =1 [d2A_u] 
y:0 2L ay2 j , :o = G 3 

Since dxo ~ Dp(u, u + r) - Dp(u, u) and dyo ~ D2(u, u + e) - Dp2(u, u) when 
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--~ 0, and since Dp(u, u) = 0, the formal writing " d ~  = dx g = da n'' is consistent. 
Therefore, if [d2AJdX2]x=O = 0, then eq. (E) takes the second differential form: 

y_oat74_ ~-- d2 g~  . (lEft) 
ey 2 ] 

This is a definition equation of da 4 as soon as [d2Bu/dy2]y= 0 ¢ O. The theorem 
below claims that it has one real solution as soon as d2K~ f> 0. 

T H E O R E M  3 

Whatever the compact group G is: [d2Bu/dy2]y=o >>.0. And if G is a finite group: 
[d2 Bu/ dy2]y=O > O. 

Proof 
It is easily checked that 

[d2B-ul = f f f lim cos2(gu - h(u + a) ,ku - u - ~) dg dh dk>~O 
[ dY 2 Jy=O J J J ~ - , o  63 

This expression is strictly positive if the set of the members of G 3 satisfying 

lim cos2(gu-  h ( u + e ) , k u -  u -  e) ~ 0 
t---~0 

cannot be neglected for the Haar measure of G 3. Since it equals 1 for g = h = k 
= e (whatever e is), this is always true for finite groups. [] 

We conclude that the existence of a differential solution for the basic equation 
(E) by means of either eq. (E') or (E") depends on whether d2K~o i> 0. Furthermore, 
the solution is a consistent metric on E/G if d2K~ has a definite and positive 
bilinear form. 

From the Cauchy-Schwartz inequality, 

I fo(guldu)2e(gulu) dg-(f6(gu]du)e(gUlU) dg) 2>~O. 

Thus, theorem 1 provides a sufficient condition ensuring that d2K~ is positive: 

c(g(du)ldu)e(gUlu) dg >>-0, 

i.e., whatever the value of a (= du) is: fc(gala)e(gUlu) dg >10. 
If u is close enough to the unit representation (Vg~G, gu---*u), 

fc(ga]a)e(gul") dg tends to e Ilul12 re(gala) dg. From a proposition given in refs. [1 a,3], 

re(gala) dg>~O. Thus, daK~0 is positive for any vector u in the neighborhood of the 
unit representation (in particular in the neighborhood of zero). 
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THEOREM 4 
Let G be an Abelian compact group acting on an Euclidean space E. Then, 

d2 K~ is positive anywhere in E / G. 

(Proof is given in the appendix.) 
If G is no longer Abelian, it is difficult to determine whether d2K~ is always posi- 

tive (and/or  definite) in E/G. Nonetheless, some examples below validate the rele- 
vance of the question. 

3. Irreducible representat ions 

From now onwards, the terminology of representations in Hermitian C-vector 
spaces (G-Hilbert spaces) is adopted. 

THEOREM 5 
Let G be a compact group realized as an isometry group of the Euclidean plane 

E = R 2, such that if R 2 is identified to C, E is a G-Hilbert space of degree one with 
an irreducible character ~i (G ---~ Cn, Dn,n = 2 , . . . ,  oo). Then d2K~ is anywhere 
positive and definite in E / G. 

(Proof is given in the appendix.) 
General expressions of d2K~0, alternative to the expression given in theorem 1, 

are proposed when E is considered as a G-Hilbert space. 

THEOREM 6 
Let E = R 2 ~ C be an irreducible representation space of a compact group G, 

isomorphic to an irreducible representation F of degree one, with a character 
X = ei% Then 

d 2 K ~ = 2 [ K l ( u , u + d u ) - l - O ( l d u ) 3 ] = 2 { ( K  ~ )  Re2(u ldu)+J l ldu l l  2 

- (1 - K )  Im2(uldu)} , 

where 

I =  . L e  r2c°s~(g) dg, J = .Lc°sa(g)er2C°S~(e) dg, 

K = L c°s2 a(g)e~ cos~(g) dg. 

In terms of polar coordinates (r, 0): 

12 ~- + -- . r 2dO 2. 



R. Chauvin/ Chemicalalgebra. IV 291 

This results from theorem 1, but a somewhat intuitive proof  is given in the 
appendix. 

THEOREM 7 

Let G be a finite group, and let E ~ R 2 be an isotypical G-Hilbert space of an irre- 
ducible representation of degree one with a character X = e~% If E is not isotypical 
to the unit representation, then 

= 1 + 2 cos[2c~(g)] dg 
L Y ]y=O -~l ds2' 

where c is the number  of elements g such that x(g) = 1, ds a = IJdull 2, dr 2 = dllull 2. 
c is also the order of  the group C(e) = {ge G; x(g) = 1}, and c/IG I is also the reci- 
procal of  the index of C(e) in G, [G : C(e)]. 

(Proof is given in the appendix.) 

COROLLARY 

Under  the same general hypothese as in theorem 7, G is supposed to be a cyclic 
group Cn,n>~2, and its natural representation on E~-R  2 is considered 
(x(g k) = e x p [ ~ ] ) .  Then [dZBu/dyZ]y=o depends on dra/ds 2 only if n = 2. More 
precisely, FdZBul =I(~__~) 

• ifG=C2,1dy21y=O -~ 1 +  , 

• i fG = Cn,n>~ 3, [ d2Bu] = 1 
L dY 2 J y=O 2' 

(in polar coordinates in R 2, ds 2 = dr z + r2dO2). 

Proof 
Ifn = 2, 

]GI fG cos[Za(g)] dg = cos[0] + cos[27r] = 2. 

I fn ~ 2, 

IGIf6cos[2o~(g)]dg=Re[Ze2iC'(g) ] = Re [~z~ exp ( ~ - ~ )  ] 
LgE(~ J Lk=O 

[1 - - e  4i7r ] 
= Re L1 - e4 i=/"J  = 0 .  

The corollary follows from theorem 7. [] 
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A direct application of theorems 5, 6 and 7 allows the solution dcr 4 of eq. (E") to 
be explicitly calculated when E is a G-Hilbert space of degree one. 

d s  4 __ d 2 K ~  
[d2Bu] 

L- 3,=0 
This formula is illustrated in the examples below. 

(1) G -- Coo 

Let C = R 2 be the irreducible representation space of Coo defined by 

V g = e ia 6 Coo , V z = re i° ~12,  g z  = re i(°+~) . 

Using theorem 6 and the corollary of theorem 7, the solution of eq. (E") is simply 
calculated [4]: 

do- 4 ---4r2 ( l -  ~---2)dr2 , 

with 

1 1 /2rer2C°Sa da  J = e r2c°sa 
I = 2-~J0 ' 2--~ J0 cosa  da .  

(2) G = C2 

Euclidean pairing products of this group were proved to be discriminating. By 
a direct calculation or by applying theorem 6 and the corollary of theorem 7, the 
general expression of the solution of (E") for the representation "au  = - u "  is 
calculated: 

4( 
tanh r 2 ds 2 + c°sh 2 r------  5 

l + - -  
ds 2 

or using the polar coordinates: 

dcr 4 = 4 

dO 2 

1 + ra d~-fr2 [ ( tanh r2 + _ _  

2 + r 2 d02 
dr  2 

"~ dr 2 + r 2 tanh r 2 dO 2] . 
cosh r2J 

Along real lines (dO = 0: F ~ ~ ) ,  dr  2 -~- d s  2 -~ d x  2, 



R. Chauvin / Chemicalalgebra. IV 

( for x # O: do A = 2 t anhx  2 + dx 2 
C O S ~  X 2 

f o r x = 0 :  do2 = dx 2. 

Along the circle of radius r > 0 (dr = 0): drr 4 = 4r  z tanh r a dO 2. 

293 

4. Kinet ic  dis tances  on  E/G 

Let E/G be identified to a part  of representative vectors of E, and suppose that  
E contains a unit representation subspace of  G. Let us consider curves of  E with 
everywhere a non-zero projection onto the isotypical unit representation (dsl # 0). 
Theorem 2 suggests that if d0t is a positive differential form (especially ifKp is a dis- 
criminating pairing product),  a distance Ap could be defined by 

[G : GU] fo (ds/dt) dZvYd+ Ap(U, v) = Inf  f d~r - Inf  dt. 
eurvescu~,Jcu_, ~ curvesC~., u.,(dsl/dt) 

A curve Cu-*v with an extremum length for a metric da  2 can be called a "geodesic 
line" between u and v. By extension, curves without a projection on the unit  repre- 
sentation (dsl = 0) would have an infinite length. However, an area can be asso- 
ciated with such curves by means of the definition of d~ 2 from eq. (E") as soon as 
[~]y=0  # 0 (theorem 3): 

A(u,v)  = Inf dcr2= Inf  r____=~ dt. 
c u r v e s  C u ~ v ~ v c u r v e s  C u ~ v 

/ ay 2/y=0 
Metric forms on E have a quadratic expression: 

: Z  ,jdx, axj, 
i j 

where the xi's are curvilinear coordinates of M. The aij's are functions of  the xi's, 
and ds 2 is heterogenous and isotropic (the a0.'s depend on the position, but not  on 
the "direct ion" in which the linear element is measured: the aij's do not  depend on 
the dxi's). Metric forms do 2 on E/G depend on both the position (Xl , . . . ,  xn) and 

d_~ with respect to the subspace of  the unit  on the "relative directions" (d:,~---~,,..., dx,, 
representation (where the metric and eventually the interpolating completely G- 
invariant distance coincide with the Euclidean metric). These metrics are therefore 
heterogenous and anisotropic. 

5. C o m p r e h e n s i v e  s tudy  o f  the  g roup  S 2 

We first give a general result concerning the direct sum of  irreducible representa- 
tions of  degree one containing the unit representation. 
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THEOREM 8 
Let E be a G-Hilbert  space with two isotypical components:  E = ml V1 @ m2 I/-2, 

where VI is a unit  representat ion space of  G and V2 is any irreducible representat ion 
space of  G: any vectors u and v are direct sums of  their components  Ul and vl in 
ml Wl, and U2 and v2 in m2 V2. If  Kp is a pairing product  o f  E, then Kp(u,  v) 
= Kp(ul @ u2, vl @ v2) = Kp(ul,  Vl)Kv(u2, v2), and 

d2K~ '*u2 = d K~ u, d2K~2 . 

Proo f  
For  any u = u 1 (~ u2, with ul Eml gl and U2 Em2V2, the functions KU, K u', K u2 

are defined in the neighborhood of  0 by 

gu(E)  = gp(u ,  u -[- E) = g p ( u l ,  Ul -[-El)" gp(u2,  u2 -]- ~2) = gu '  (El) " gu2(E2) , 

where e = el @ e2, with el e ml V1 and E2 E m2 V2. 
By differentiation at e = 0, 

dK~ = K u' (0) .  dKo u2 + K u2(0)- dKo u' = 0 ( theorem 1), 

and 

U2 Ul d2K~ = KU'(O)d2K~ 2 + KU2(O)d2K~ ' + dK~ldK~ 2 + dK; dK; 0 

= K u' (0)d2K~ 2 + K u2(0)d2K~ ' + 0 ( theorem 1). 

Since K ~' (0) = K ~2 (0) = 1, the result is proved. [] 

82 has only two irreducible representations: the unit representat ion V1 and 
the representat ion V2. Any representat ion space 
V = m1111 @ m2 V2. It has been proved elsewhere that  

1 
• (x ~) = ~°,v(x) = g 

g ,h,k =± l 

x exp 

Thus: 

V of  82 can be reduced as 

p Ilul - -  V1112 + Re(gu2 - hv2lku2 - v2) x2|  
-1 

v / l l u l -  v~ll 2 + I l gu2 -  hv2112v/ l lul -  viii 2 + 1 1 ~ 2 -  v2112 J 
• '(0) p h,~± Ilul - v1112 + Re(gu2 - hv2lku2 - v2) 

= gg , ,  -- 1 v/ l lul  - va II 2 + Ilgu2 - hv2112 X/llu~ - va II 2 + 11~2 - v2112 

Setting U l -  vl = E1 and u 2 -  v2 = e2, and using the expressions "Re(ui ldui )  
= ri dr,", "lldu;ll2 = d~" ,  the values of  the eight terms occurring in the sum are col- 
lected in the table below for u2 # 0: 
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g h k g h k 

+ + + 1 - + + 

+ + - d r 2 / d s  - + - 

+ - + - d r 2 / d s  - - + 

+ - - - 1  - - - 

dr2/ds 
1 

(~,, - ~ ) I ( ~  + ~)  
- d r  21ds  

Therefore, 

[ d A:] = lim~'(O) P//1 -'1 d~l-d~'~ P d~ 
, ~ 0 ! t ds~ J - 4 d 4 " L dx~ Jx:o =g ~ + +d~ 

If uCml V1 (i.e. U2 • O) and if d~ ¢ O, the metric &r 2 is defined by [d2Au/ 
dxZ]x=o(¢ O) and by 

d2Kg 2 U2 2 ul =dK,; + d~+ dK~ = t a n h r 2  2 

(see preceding section). 

cosh  2 r2 2 

• ForuCmlV1,  

- and d~ ¢ 0 : 

- and d~ = 0 : dcr 4 - - -  

( do 2 = 4 1 + ds~J d~ + tanh ~d~ + 

4 ( t anh~ds~q  4 ) 
1 + d 4  cosh 2 r~ d4  " 

a4 
• F o r u ~ m l V l , d o  2 = d s ~ + d ~  = d ~ .  

The metric is not continuous in the neighborhood of ml VI" when u ~ ml V1 but 
u-+m~ V~,r2 tends to zero and do a - - 4  (d~  + d~)(1  + 0 ) 4  ds~ + ds~2, the latter 
expression being the metric in ml V1 [5]. 

The result is illustrated by the action of 82 in R 2 by reflection through the y-axis 
(real projection of the regular representation of 82). The x-axis is the real projec- 
tion of the non-unit irreducible representation of 82 (dx 2 = d~ = d~) ,  and the y- 
axis is the real projection of the unit irreducible representation of 82 (dy 2 
= d~ = d~). The non-differential solution of(E) was already given explicitly. R 2 is 
now endowed with the corresponding metric do -2, allowing the geodesics of this 
metric to be calculated. 

Let us define the real function F(x)  = tanhx  2 + xa/cosh2x2~>0. We seek for 
curves (y = y( t ) ,  x = x(t))  in R 2 / G  = R x R+ with extremal lengths for the metric 
da 2. Setting T = ½da 2/df l ,  the Euler equations are written as 

-~ \ ay, ) ~ ' -~ \ ax, ) ax 
m - - O .  
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Excluding both the y-axis and the x-axis from R x R+, the linear element along 
curves without  any section parallel to the x-axis is: 

do -- 4 1 + 7 + F(x)x'2) a t2  

Restricting the curves to those given by implicit functions y -- y(x),  t = x: 

do 2 = 4  1+ (y + F(x))  dx 2. 

The Euler equation left becomes 

0 ~ / ( 1 +  1 ) (y '2  Oy' -y~ + F(x)  ) = k (constant).  

Simple derivation yields 

(1 - k2)y '8 - k2(F(x) + 1)y '6 - (2 + k2)F(x)y '4 + F2(x) = O. 

For k = 0, the equation reduces to y ,8_  2F(x) j4  + F2(x) = 0. The geodesic 
solutions are given byyo(x) = e + fo~[F(t)] 1/4 dt, c = constant.  

For k = 1, setting Y(x)  = [F(x) + 1])/2(x) -t- F(x),  the equation is easily proved 
to be equivalent to y3 _ 3F2(x) y _ F2(x)[1 + F2(x)] = 0. The discriminant of  this 
equation equals A = 4[-3F2] 3 + 27[F2(1 + F2)] 2 = 27F4[F 2 - 112f>0, and a Car- 
dan's solution is Yl = F2/3 -k F 4/3 

The equation is therefore 

FZ(F 2 +__1)'~ 
(Y - Y1) y2 q_ [F2/3 q_F4/3]yq F 4/3 q-FZ/3J . 

The discriminant of the equation of  degree two is: 

/1 = -3F4/3(1 - F2/3) 2 ~<0. 

Thus, there is only one geodesic left for k = 1" 

fox / F 2 / 3 ( t ) + F 4 / 3 ( t ) - F ( t )  
Yl (x) = c ± 1 + F(t) dt. 

All the lines parallel to the y-axis are also geodesics: along these lines, ds 2 
= 4d~  (d~ = 0) is of  Euclidean type. Geodesic lines in R 2 for some k values are 
plotted in fig. 1. Intuitive graphical speculations suggest that the shortest pa thway 
/1p (u, v) joining to points u and v with the same y coordinate does not  exist: the ser- 
ies of  the lengths of pathways drawing nearer  to the segment [u, v] seems to tend 
toward a lower limit, but the limit pathway (segment [u, v]) is discontinuously asso- 
ciated with an infinite length [6]. 
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=u o ,-, 

-1 z ".,~ , i x . ,  i 

0 1 2 

m ~ u w u 

,L 

X 

Fig. 1. 

6. Concluding remarks 

Two kinds of distance are possibly defined on E/G: a distance extension Dp and 
the distance Ap of the metric do ~. The former is derived from a thermodynamical 
interpretation, while the latter gives the length of the "shortest pathway" between 
skeletal analogs. Since Dp < Ap, "the shortest transformation pathway is always 
longer than the thermodynamic gap". In other words, some kind of non-zero 
"activation energy function" is needed to transform a molecule into a skeletal ana- 
log: this activation energy function lengthens the ideal thermodynamic gap 
between them. When none of the ligand parameters is constant, this activation 
energy does not rapidly tend to zero when the skeletal analogs draw nearer to each 
other, so that the curve lengths are infinite: these transformation pathways may 
be compared to "fractal" pathways. Differential geometry is a tool serving the ana- 
lysis of chemically reacting systems [7]. Modeling of chemical transformation path- 
ways by geodesics of simple Hilbert spaces (G = {e}) has been proposed [8]. In 
view of reproducing the Woodward-Hoffmann rules, the geodesic lines of the Hil- 
bert space of the electron states of a reacting system (endowed with its natural 
metric), were shown to satisfy the Least Motion Principle of minimal structural 
changes which is itself expressed by a maximization condition of a scalar product. 
This is related to our formalism where geodesic lines correspond to the requirement 
of stereogenic pairing equilibria between infinitesimally close intermediates (equa- 
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tions ~ ' )  and (E")). The mathematics that have been elaborated so far aim at 
describing the very conceptual chemistry of stereogenic pairing equilibria. Many 
questions are still open: the discriminating character of general pairing products, 
the explicit and differential resolutions of eq. (E), the triangular inequality of the 
solutions and the comparison of distances Dp and Ap. The ultimate design of new 
completely G-invariant distances might find applications in all problems of recog- 
nition between symmetrized systems, and these preliminary results and specula- 
tions will give rise to further investigations. 
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Appendix 

Proof of theorem 1 
Let (e l , . . . ,  en) and (ul , . . . ,  un) be the respective coordinates of vectors e and u 

in an orthonormal basis set (el, • • •, en) of E. 
By differentiation, 

n 0 / c ,  

d2K~ ~ ~ 02[~] dEidEk. 
i=1 k=l e=0 

By definition, 

= 

0IC' 
cgei 

I 2 
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With: 

I = fa e(g"lu) dg, 

O 
Ai(g) = ~ (g(u + e)lu + e ) (=  Ai) , 

Bi(g) = (gulu + ¢)(= (gulei) = Bi) . 

Since e (eulu) = e (e-m'lu), the term 2Bi(g) occurring in the sums can be replaced by 
Bi(g) + Bi(g-1). 

Let u = (ux , . . . ,  u,), e = ( e l , . . . ,  En) in an or thonormal  basis of  E. The matrix 
coefficients of the isometry g in the same basis are denoted as are(g), 1 <~r<~n, 
l <s<<.n. 

Ai(g) - Bi(g) - Bi(g -1) = ~ [(g(u + e)lu + e) - (gulu + e) 

0 
- ( g - l u l u  + e)] = b - - - e / [ ( g e l e )  - (gulu)] 

= (gels) = -4-- ~_~ ~ ars(g)eres 
OEi r=l  s=l  

n 

= ~-~(air(g) + ari(g))er. 
r=l  

A t  e = 0: A,(g) - Bi(g) - Bi (g  -1) = 0,  i.e. Ai(g) = Bi(g) + Bi(g-1). But at e = 0, 
we calculate 

~ Ku] 2Bi(g)]e(gul u) 

Consequently,  [OKU/ Oei]E=o = O, and dK~ = O. 
Let us calculate the second derivatives at zero: 

[OekOeiJ[ 02KU ] E=o = ~ { I 4 [ ( f a ( O A i + A i A k ) e ( e ~ l " l d g )  I2+ (faAie(gulu) 
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x(fc2Bie(~'lU) dg)-I2(f(2OBi+2BiBk)e(gUlU)dg)]\JG\ Oek 

--413(faBke(gulu) dg)[(faAie(gUlu' dg)I2-IE(fc2Bie(gUlu)dg)l } 

= ~ ( I  [ (OAi+AiAk)e(gUlU)dg+2~GAie(gUlU)dg k 

--2faAke(gulu'dgfGBie(gulu) dg--2fGBke(gulU)dgfGBie(gulU)dg 

-2I [ \Oek + BiBk) e(gulu, dg - 4 [.~.1~ Bke(gulu) dg£ Aie(gulu) dg 

-t-8[Bke(gUlU'dgfGBie(gUlU) 

--lflf(OAi.+.AiAk)e(gulu)dg_2fGAie(gUlU)dgfGBke(gUlU)dg 

--2fGAke(gulu) dgfGBie(gUlU)dgq-6fGBke(gUlU)dgfGBie(gUlU)dg 

-2I[(OBi+BiBk) e(gulu) dg kOEk 

(O(Ai_o__~;- 2ni) - 2gigk)e (gulu) = I Z / I j G \ -  +AiAk _ dg 

-2£Ake(g"lU) dgfaBie(~'l")dg+6faBke(g"l") ~g/~e'~'~'~g} 

Again, the terms 2N(g) and 2Bk(g) occurring in the sums can be replaced by 
Bi(g) + Bi(g-1) and Bk (g) + Bk (g-i). 

It has been shown above that: 
n 

Ai(g) - Bi(g) - Bi(g -1) = Z(air(g) + ari(g))er. 
r = l  

Therefore, 

__[O-~[Ai(g) - Bi(g) - Bi(g-l)]]E=o = _  aik(g) + aki(g). 
Using again the fact that at e = 0, Ai(g) = Bi(g) + Bi(g-1), we get 
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r~,~l = 1{  ~(a~(g) + 
LOe oe;J ~=o i2 I aki(g))e (g~lu) dg 4, 2I f a  BiBke(gulu) dg 

-2faBke(gulU) dgfaBie(g"lU'dg}, 

where 

Bi(g) = (gulu + e) = (gule) = air(g)Ur = (gulei) . 
r=--I 

dEI~oo = I ~ (aik(g) 4- aki(g))deideke (gulu) dg 
i=1 = £n  o 

+ 2I ~ ~_~ BiBkdeideke (g~l~) dg 
i= l  k = l  

- 2 y~  Bk dek e(gulu) dg ~ Bide ie (gulu) dg 
k = l  /=1 

I I  dG n n  fG(~=l )2  = ~ 21 f ~ ~ aik(g) de, dek e (gulu) dg + 21 Bidei e (gulu) dg 
i=1 k = l  

- 2 B, de, e (~1~) dg . 

But  f rom the defini t ion of  the de/s, 
n n n 

B, de, = (guldu) , ~ ~ aik(g) dei dek = (g(du)ldu) . 
/=1 i=1 k = l  

In conclusion,  

dEI~ = ~ I (g(du)Jdu)e (gulu) dg + I (guldu)Ee (gulu) dg 

[] 

Proof of theorem 2 
Reta in ing  the prerequisites of  the p r o o f  of  theorem 1, for v = u 4. e: 

dx2 J x=o 
2~'(0) .  
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Let ~Pl denote the projector onto the unit representation. 
Since A,(x) = lim~--,0 ~u,~+~(x): 

[ ~ ]  =21im~,(O)=2ji__rnoPllipl(u)_iPl(U+e)ll2( L dg )2 
= J x=o ~-~o I l g u  - u - ell  

. ~ ¢ u l l g u -  ull +21impll~l(e)ll 2 dg 2 
. - - o  .~=u Ilcll 

-- 0 + 2 lim plI:Pl(e)II2 ( ~  I~11) 2 ~--0 

_ 2 p  2 l i m  11°5(E)II= 
[a :  G-] ~--0 IIEII = 

The result is proved, by setting d~ ~ II:Pl (e)II = and ds 2 ~ Ilell =. [] 

(G ~ is the stabilizator group of u) 

Proof of theorem 4 
From theorem 1, it is sufficient to show that 

V(a,u) eE 2, L(gala)e(gUl~) dg>~O. 

o~ 1 

L(gala)e(gul") dg = p~'~__opi L(ga[a)(gulu)P dg. 

The representation in E is naturally extended to a representation in the complex 
space C x E endowed with the Hermitian form ( .  I " ) coinciding with ('l') on E. If 
X1,..-, Xr are the irreducible characters of G, then 

(gala)(gulu) p dg = ~iWp,i 
i=1  

with 
r 

(ga[a)=~-;_,~ixi(g) and (gulu)P= rlp,iXi(g ) 
i=1  i=1  

(expansions of the central functions g-+ (gala) and g--+ (gulu)P on the basis of 
the irreducible characters of G). We aim at proving that the ~i's and the r/p,i's are real 
and positive numbers. 

It has been proved above that ~i = II~iall 2 and rh,i = II0~iul[ 2. 
Suppose that the rlp-1,/s are positive real numbers, r/p,1 is expressed by 
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f f 
rlp,i = Ja (guluy' x~' (g) dg = Ja (gulu)P-' (gulu)x'i (g) dg 

" " £ 
= Z Z llP-l'hlll'k Xh(g)xk(g)x~'(g) ag, 

h=l  k=l  

fa Xh(g)xk(g)x~ (g) dg = fa Xh~k(g)x~ (g) dg = the number  of times the ith irreduci- 
ble representat ion of G occurs in the tensorial product  of the hth by the kth irreduci- 
ble r ep re sen t a t i ons=a  positive integer. Since rle_l,h and ~l,k are positive real 
numbers,  the same statement is true for all the r/p,i's. Thus fa (gala)(gulu~ dg and 
hence fa (gala) e<g'l') dg, are positive real numbers.  When u and a are restricted to 
vectors with real components,  ( .  I " ) can be replaced by (-1-) and d2K~ is positive. [] 

Proof of theorem 5 
The Hermit ian  form of E is denoted as ( .  I " ): its real component  is the scalar 

Pr°duct  °fR2, ('l') = R e ( .  1. ). Since 

(gala) = xi(g)llall 2 and (gulu) = xi(g)llull 2, 

we get 

fa Re(gala) eRe(gulu) dg = Ilall 2 £ Re[xi(g)] e Re[X'(g)lllull2 dg. 

Let us define the function on R +: 

f:  R+ ~ R ,  f (x)  = fa Re[xi(g)] e Re[Xdg)]x dg. 

We get f (0 )  = 0 (the trivial case G = {e}, whereff(0)  = 1, is not  considered). But 

f '  (x) = fa Re2[xi(g) ] eRe[x'(g)lllul[2 dg > O . 

Thus, f2str ict ly increases and remains strictly positive over R + -  {0~. Taking 
x = Itull, it follows that d2K~ is positive. Since dEK~0 = 0 implies Ilall -- 0, i.e. 
a = 0, d2 /~  is also definite. 

Proof of theorem 6 
We proceed intuitively by expanding Kp(u, u + du) to the terms du of order 2. 

g l ( u , u  + du) ~ [Z[I + (lldull 2 + 2 Re(u[du))J + 2K ReZ(uldu)]]/ 

[I + J Re(uldu) - J' Im(uldu) + (g/2)  ReZ(uldu) + (Z/2) Im2(uldu) 

- M Re(uldu ) Im(uldu)]2], 

where 

I----- fag r2Rex(g) dg , 
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J = f a  Re x(g) er2Rex(g) dg, 

K = , £  Re2x(g) e r2 Rex(g) dg, 

J ' =  fa  Im x(g) eta Rex(g) dg, 

L = fa  ImEx(g) er2Rex(g) dg, 

M = f a R e  x(g) Im x(g) er2Rex(g) dg. 

Since x(g) = X* (g-l), it is evident that J '  = M = 0. Further expansion to the terms 
du of order 2 gives 

l + l d 2 K ~ o ~ K l ( u , u + d u ) = l + (  K J~--~)Re2(u[du)+JHduH 2 

LIm2(uldu) + C9([du)3). 

On the other hand, K + L = I, and the theorem is proved. 
Considering E as a complex line: u = re i°, du = dr e i° + ir dO e i°. Thus, (u]du) 

= u du* = r dr - ir 2 dO. Substituting the imaginary and real parts by their expres- 
sions in the former equality, the theorem is proved. [] 

Proof  o f  theorem 7 

Since E is an isotypical representation of degree one: Va ~ E, ga = x(g)a. 
From theorem 3, 

/ / /  2 Jy=0- J i ~ m ° c ° s 2 ( g u - h ( u + e ) ' k u - u - e ) d g d h d k > ~ O "  

6 ~ 

• Forg, h ,ksat is fy ingx(g)  # x ( h ) a n d x ( k )  # 1 (IGI x (IGI- c)2 triplets): 

. .  f x(g)x*(k) + x(h) - x(g) - x (h )x*(k ) ]  

Setting X (g) = eia(g), standard trigonometric calculations lead to 

cos(gu - h(u + ~) ku- u- ~) ; ± cos [¢ g) + o~(h) - ~(k)] : ± cos~(ghk -') 
' [ 2 J 2 

• Forg,  h, k s a t i s f y i n g x ( g ) #  x(h) a n d x ( k ) =  1 (la[ × (IGI- ~) × ctriplets): 
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c o s ( g u  - h(u + ~), ku - u - E) 

"~ Re{[[x(g)x*(k) + x(h) - x(g) - x(h)x*(k)]llull 2 + (x(h)- x(g))(ule) 
e --~ O 

+ x (h ) (1  - x*(k) ) (~ lu)  + x ( h ) "  IIEII2]/[Ix(h) - x(g)I"  Ilull" Ilell]} 

Re~ (X(h---) Sx(g-))(uJ-e)- .1 
~-*0 l l x ( h )  - x (g) l "  Ilull" IlellJ 

[-2 sin(a(hg)/2) sin(a(hg -1)/2) cos(u, e) 
e--~0 

- 2cos(a(hg) /2)  sin(c~(hg-1)/2) sin(u,e)]/[2l sin(c~(hg-1)/2)l] 

+ s i n [ ~ ) +  (u,e)] =±Im[ei"(g)/2g(u'e)]. 
e--~O 

• Forg, h, ksatisfyingx(g) = x(h)andx(k) ¢ 1 ([G] × c x (]G I - c)triplets): 

cos(gu h(u+e),ku -e )  .. fx(h)(1-x*(k))(elu)} - - u  e ~0 tie ~] -~-_£  ] [_ i]-~_ 1- ~ 

--~ [-2 sin(a(k)/2) sin(a(h) - a(k)/2) cos(u, e) - 2 cos(a(h) 
e ---*" 0 

- a(k)/2) sin(a(k)/2) sin(u, e)]/[2] sin(a(k)/2)11 

± s i n ~ ( h ~  -1) 4-(e,u)] =+Im[ei~(h2k-')/2ei(e'")]. 
e -o,. 0 

• For g, h, k satisfying x(g) = x(h) and x(k) = 1 (I GI x c 2 triplets): 

Ref  X(h)lleH2"~ 
c o s ( g u  - h ( u +  E),ku - u - E) 2 0  [ IIEII2 j = c o s t ( h ) .  

If G is a finite group, let us define for any element g of G the subset of 
G: C(g) ---{heG;x(g) = x(h)}. The number of elements in C(g) is denoted as 
#C(g) = #C(e) = c. It follows that [d2 B,/ dy2]y=o equals 

{ ~  a(ghk-1) 1 ~ ~ COS 2 
If~111"3"13 heG keG 2 

x(h)7~x(g) x(k)#l 

÷F Z 2 
gsG heG k e g  

x(h)=x(g) x(k)~41 

geG heG keG 
x(h):~x(g) x(k)=l 

sin2[ a(h2k-~) + (e'u)] + ~-~gec hea ~ keG~--~ c°s2a(h)} " 
x(h)=x(g) x(k)=l 

Let us calculate each term of the sum. 
(a) The first one is denoted as 



306 R. Chauvin / Chemical algebra. I V  

~=~ ~ Zcos~(e~ -'/ 
geG hEG k~G 

x(h)#x(g) x(k)~l 

Then 

=~-~ ~ ~cos 2a(ghk-1) 
geG h~G Lkea 2 

k E~C(e) cOs2 a(gh2k-l) ] 

h e C(g) 

~--~ COS2 a(g~k-1) 
EG k e C(e) 

A  / r cos2O k  
gea hea Lkea 2 

- - -  ~ cos~] 
k e C(e) 

[k~ a a(k) COS2 
h ~ C(g) 2 

-  eC°S  l/ 

- -  -- C COS 2 ~ ]  

L kG [~~ 2 °~(k) ~-~]} -z : cos ccos  
h e C(g) 

Setting S = ~'~kea c ° s 2 ( a ( k ) / 2 )  and T = ~-~-k~a c°s2 a(k) ,  we get ( # C ( g )  = # C ( e )  
= c) 

A = ( 1 6 1 2  - 2clal)S + cET 

(b) The last term is simply 

~ = ~  ~ Ecos~(h~=~. 
geG heG k e g  

x(h)=x(g) x(k)=l 

(C) The second term is denoted as 

geG heG keG 
x(h)#x(g) x(k)=l 
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B=c~-~l~sin2~-~+(u,e) ] - 
geGtheG h e C(g) 

(indeed a(g 2) = 2a(g)). 

(d) The third term is denoted as 

C = ~  ~ ~--~ sin2fC~(h~k-1) t-(e,u)] : 
geG heG keG 

x(h)=x(g) x(k)¢l 

C= c{iG [ ge~O [2_~_ _ s i n 2  a(g)+ (e,u)]- c~sin2[c~(g)+ (Gu)]} • 

Using the equality (e, u) = -(u, e), the sum B + C is calculated by standard trigo- 
nometry: 

n + C = c~ 2161S - 2161 cos2(u, c) ~ cos c~(g) 
/ geG 

- 2cT + 2cc°s2(u'e) gea ~ cos[2a(g)] } . 

But if E is not the unit representation, 

~--~cosa(g) = Re{eE~ox(g)} =0. 
gEG 

Thus 

d2B.] _ 1 [A + (B + C) + D] 
dY 2 Jy=O 1613 

1 c 2 
= .I-G-[ S + 2 (-[-~-[)COS2(U, e) i - ~  COS[2o~(g)] . 

(The coefficient of the sum T vanishes.) 
Notice that 
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S Z c°s2 a(k)2 "---' cos a~k) + 1 = _~- - '  _1~ + ~1 Z cos a(g)  = 1 + O. 
kEG k e g  g~G 

If e is identified to the differential du, 

cos2(u,e) = ( R e ( u i d u ) )  2 
\ llulllldull ) " 

If r = Null, then Re(uldu ) = r dr. On the other hand, Ildulf = ds 2. The theorem 
follows. [] 
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